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1 Introduction

Superstrings on AdS spaces have been widely studied by virtue of their applications to the

holographic duality, i.e. the AdS/CFT correspondence [1]; and it has become clear that

the structure of supergroup σ-models is of great importance to investigate superstrings

in these spaces. For instance, the supergroup PSU(2,2|4) turns out to be important to

construct superstring theory on AdS5 × S5 [2]. Besides, superstring theory on AdS3 × S3

can be described in terms of the PSL(1,1|2) WZNW model [3]. However, in spite of its

importance, quantizing supergroup σ-models is a quite difficult problem, and hence solving

superstring theory on AdS spaces exactly still remains as an unsolved question.

Fortunately, there is a simpler type of duality for which string world-sheet theory

is still described by a supergroup WZNW model. It has been established in [4, 5] that

two-dimensional superstring (type 0 string) can be holographically described by a simple

Hermitian matrix model. At present, this is the only dynamical model of string theory

which is non-perturbatively well-defined and is exactly solvable even at finite temperature.
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The two-dimensional type 0 string theory is originally defined by string world-sheet theory

with the ĉ = 1 matter coupled to N = 1 super Liouville theory. Boosting the linear dilaton

with Liouville potential kept the same, this theory can be extended to ĉ ≤ 1 type 0 string

theory as it has been done for bosonic string in [6, 7]. Note that dual matrix model can be

constructed even for ĉ < 1 case, as shown in [6].

In this paper, we argue that these ĉ ≤ 1 superstring theories can be described by

utilizing the supergroup OSP(1|2).1 Precisely speaking, we propose that the ĉ ≤ 1 super-

string is equivalent to topological string on N = 2 superconformal coset OSP(1|2)/U(1).2

This relation can be thought of as a supersymmetric version of the known relation between

c ≤ 1 bosonic string theory and topological string on SL(2)/U(1) [7, 14]. This extension

might be guessed from the quantum Hamiltonian reduction since OSP(1|2) WZNW model

is reduced to N = 1 super Liouville theory [15], just like SL(2) WZNW model is reduced

to bosonic Liouville theory [16].

This paper is organized as follows. In the next section, we explicitly construct the

N = 2 superconformal coset OSP(1|2)/U(1) as a natural extension of Kazama-Suzuki

model for bosonic cosets [17, 18].3 We analyze it in the free field theory and show that

the ĉ ≤ 1 string world-sheet appears after the topological twisting. In particular, we show

that free fields in the coset model become the matter contents of ĉ ≤ 1 superstring, and

the chiral primaries of the coset model are identified with the physical operators of ĉ ≤ 1

superstring. In section 3, we review and extend the map between the correlation functions

in OSP(1|2) WZNW model and those in the N = 1 Liouville theory. This relation was

originally obtained in [21] as an generalization of H+
3 -Liouville relation [22, 23]. In section

4, after briefly reviewing ĉ ≤ 1 superstrings, we apply this map to study the scattering

S-matrices. We explicitly show that the correlation functions of physical operators in the

topological model are mapped to those of physical operators in the ĉ ≤ 1 superstring. In

section 5, we summarize the conclusion. In the appendix, we discuss correlation functions

of OSP(1|2) WZNW model in the free field representation.

2 N = 2 coset OSP(1|2)/U(1) and 2D superstring

In this section we construct and analyze N = 2 supersymmetric coset (Kazama-Suzuki

model [17, 18]) based on OSP(1|2)/U(1). After its topological twisting, we show explic-

itly from the free field theory analysis that the world-sheet theory of ĉ ≤ 1 superstring

indeed appears. We also discuss chiral primary states which are the physical states in the

topologically twisted theory.

1Current superalgebra of OSP type also appears in an attempt [8] to generalize heterotic string so as to

be dual to type I string theory with a OSP gauge symmetry.
2Topological strings on cosets based on sugerpgroups have been studied for the analysis of Maldacena

conjecture via world-sheet theory in [9–13].
3Generic construction of Kazama-Suzuki model for cosets of supergoups was given in [19, 20]

very recently.
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2.1 OSP(1|2) current algebra

The current algebra of OSP(1|2) includes SL(2) bosonic subalgebra, which is generated by

J3(z) and J±(0) with their OPEs4

J+(z)J−(0) ∼ k

z2
− 2J3(0)

z
, J3(z)J±(0) ∼ ±J

±(0)

z
, J3(z)J3(0) ∼ − k

2z2
. (2.1)

In addition to these bosonic generators, there are fermionic ones with

J3(z)j±(0) ∼ ±j
±(0)

2z
, J±(z)j∓(0) ∼ ∓j

±(0)

z
, (2.2)

j+(z)j−(0) ∼ 2k

z2
− 2J3(0)

z
, j±(z)j±(0) ∼ −2J±(0)

z
.

The energy momentum tensor is given by Sugawara construction and the central charge is

c = 2k/(2k − 3). These are the definition of OSP(1|2) current algebra with level k.

In a free field representation [15, 24–26] the above currents may be expressed as

J− = β, J+ = βγ2 − 1

b
γ∂φ+ γθp+ k∂γ − (k − 1)θ∂θ, (2.3)

J3 = βγ − 1

2b
∂φ+

1

2
θp, j− = p− βθ, j+ = γp− βγθ +

1

b
θ∂φ− (2k − 1)∂θ,

where the OPEs of these free fields are

φ(z)φ(0) ∼ − ln z, β(z)γ(0) ∼ 1

z
, p(z)θ(0) ∼ 1

z
. (2.4)

The field φ has the background charge Qφ = b and the central charge is c = 1 + 3Q2
φ.

Here the parameter b is related to the level k as 1/b2 = 2k − 3. The bosonic fields (β, γ)

have conformal weights (1, 0) and the central charge of this system is c = 2. On the other

hand, (p, θ) are fermions with conformal weights (1, 0) and central charge c = −2. In the

following analysis, it is useful to bosonize the fermionic fields (p, θ) as

θ = eiY , p = e−iY . (2.5)

For instance, the J3 current takes the form

J3 = β∂γ − 1

2b
∂φ+

i

2
∂Y. (2.6)

The energy momentum tensor is given by

T = β∂γ − 1

2
∂φ∂φ+

b

2
∂2φ− p∂θ = β∂γ − 1

2
∂φ∂φ+

b

2
∂2φ− 1

2
∂Y ∂Y +

i

2
∂2Y (2.7)

in terms of these free fields.

One of the merits to utilize the free field representation is that vertex operators can

be expressed in a simple form. Namely, the vertex operators of OSP(1|2) model can be

written in terms of free fields as

Φs
j,m ∼ eisY γj−s/2+me−2bjφ, (2.8)

4For a while we concentrate on the holomorphic part.
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whose conformal weight with respect to (2.7) is

∆ = −2b2j

(
j +

1

2

)
+

1

2
s(s− 1). (2.9)

Here we set s = 0, 1/2, 1. For s = 0, 1 we can express the vertex operator even in terms of θ,

but not for s = 1/2. The operator with s = 1/2 corresponds to a twist operator in R-sector,

whose role was argued for GL(1|1) WZNW model in [27], see also [28]. In order to compute

correlation functions, the overall normalization of vertex operators should be fixed. More

precise definition will be given in section 3. Correlation functions of vertices (2.8) are

discussed in the appendix, where the Coulomb gas prescription is given.

Notice that the expression (2.9) is invariant under the Weyl transformation j → −j −
1/2 and under s → 1 − s. This allows us to consider a second contribution to (2.8) which

goes like ∼ e2b(j+1/2)φ and it would dominate the large φ regime for j > −1/4. In addition,

there exist conjugate representations which are similar to those that exist in the free field

realization of SU(2) model [25, 26, 29, 30]. For instance, one finds the operator

Φ̂0
j,j+ 1

2
∼ βk−2−2jeb(2k−3−2j)φ (2.10)

which represents a Kac-Moody primary of conformal dimension (2.9), with m=j+1/2 and

s=0. It can be also thought of as a conjugate representation for the state with m=j, s=1.

In order to define the OSP(1|2)/U(1) coset theory, we utilize the representation intro-

duced in [31] and [32] to realize the SL(2)/U(1) coset theory. This amount to introduce a

boson X3(z) with X3(z)X3(0) ∼ − ln z, as well as a (b, c) ghost system, which are used to

mode out the U(1) factor. Then the vertex operators of the coset theory are given by

Φs
j,m = Ψs

j,me
−i

q

2
k
mX3

. (2.11)

As we will discuss below, the OSP(1|2) current algebra admits the symmetry under the

spectral flow action as in the case of SL(2) WZNW model [33]. For OSP(1|2) model,

spectrally flowed states are defined in this form as

Φs,w
j,m = Ψs

j,me
−i

q

2
k(m+ k

2
w)X3

(2.12)

with the index of spectral flow w.

2.2 N = 2 supersymmetric coset model

In this subsection we would like to construct N = 2 supersymmetric model based on the

coset OSP(1|2)/U(1). For the purpose we first generalize the OSP(1|2) current algebra into

N = 1 supersymmetric version, therefore we need superpartners of currents (J3, J±, j±).

While we introduce fermions (ψ3, ψ±) with spin 1/2 for the bosonic currents (J3, J±), we

include bosons ϕ± with spin 1/2 for the fermionic currents j±. We assume the OPEs of

these fields as

ψ+(z)ψ−(0) ∼ 1

z
, ψ3(z)ψ3(0) ∼ 1

z
, ϕ+(z)ϕ−(0) ∼ −1

z
. (2.13)
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Notice that the extra bosons ϕ± satisfy wrong spin-statistic relation. With these new fields

we can define N = 1 supercurrents as

Ĵ± = J± +
√

2ψ±ψ3 +
1

2
ϕ±ϕ±, ĵ± = j± ± i

√
2ψ±ϕ∓ ± iψ3ϕ±, (2.14)

along with

Ĵ3 = J3 + ψ+ψ− +
1

2
ϕ+ϕ−. (2.15)

We construct the coset model by using the last current as well as removing one of the

fermions ψ3 to preserve N = 1 world-sheet supersymmetry.

We can show that the coset model actually has enhanced N = 2 supersymmetry as

Kazama-Suzuki models for bosonic cosets [17, 18]. We find that the generators of N = 2

superconformal symmetry are

JR = − 1

2k − 3

(
2J3 + (2k − 1)ψ+ψ− + (2k − 2)ϕ+ϕ−) , (2.16)

G± =
1√

2k − 3

(
2J±ψ∓ ±

√
2j±ϕ∓ + (ϕ∓)2ψ±

)
,

T =
1

2k − 3

[
J+J−+J−J++

1

2
(j−j+−j+j−)+4J3ψ+ψ−+2J3ϕ+ϕ−+2ψ+ψ−ϕ+ϕ−

−2k+1

2
(ψ+∂ψ−+ψ−∂ψ+)−(k−1)(ϕ+∂ϕ−−ϕ−∂ϕ+)+

1

2
(ϕ+)2(ϕ−)2

]
.

In fact, we can compute the OPEs of generators as

T (z)T (0) ∼ c/2

z4
+

2T (0)

z2
+
∂T (0)

z
, T (z)G±(0) ∼

3
2G

±(0)

z2
+
∂G±(0)

z
, (2.17)

T (z)JR(0) ∼ JR(0)

z2
+
∂JR(0)

z
, JR(z)G±(0) ∼ ±G

±(0)

z
, JR(z)JR(0) ∼ c/3

z2
,

G±(z)G∓(0) ∼
2
3c

z3
± 2JR(0)

z2
+

2T (0)

z
± ∂JR(0)

z
, G±(z)G±(0) ∼ 0.

In this way we have explicitly shown that these generators satisfy the N = 2 superconformal

algebra with central charge ĉ = c/3 = 1/(2k − 3).

2.3 Topological twisting

To realize the U(1) quotient more explicitly, we combine a free scalar field X with the

N = 1 OSP current algebra and finally take a quotient by the complexified U(1) (i.e. the

complex plane C). This quotient can be done by taking BRST invariant state about the

BRST operator

QB =

∫
dzC(z)Jg(z), (2.18)

where we introduced fermionic ghosts (B,C) with the conformal weights (1, 0). Here the

BRST current Jg is defined by

Jg = Ĵ3 − i

2b
∂X, (2.19)

and it is easy to see that Jg(z)Jg(0) ∼ 0 which guarantees Q2
B = 0.

– 5 –
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Before twisting After twisting

Central charge Conformal weights Central charge Conformal weights

(θ, p) −2 (0, 1) 1 (1/2, 1/2)

(ψ+, ψ−) 1 (1/2, 1/2) −26 (2,−1)

(ϕ+, ϕ−) −1 (1/2, 1/2) 11 (3/2,−1/2)

(β, γ) 2 (1, 0) 2 (0, 1)

(B,C) −2 (1, 0) −2 (1, 0)

Table 1. Changes of central charges and conformal weights after topological twisting.

Notice that in this formalism we can always set Jg(z) to zero since it is gauged. Using

this fact we can use the following expression of the R-current of N = 2 superconformal

algebra as

J ′
R = JR − 4k − 8

2k − 3
Jg = −2J3 − 3ψ+ψ− − 2ϕ+ϕ− + i

2k − 4√
2k − 3

∂X. (2.20)

In the anti-holomorphic part, we use the same expression with bars.5 We will find that this

form of R-current is useful to construct the topological model as in the bosonic case [7, 14].

Now, we perform topological twists [34, 35] by using the expression (2.20) of R-current.

Namely, we redefine the energy momentum tensor by T top = T + 1
2∂J

′
R and T̄ top = T̄ +

1
2 ∂̄J̄

′
R. Employing the free field representation (2.3), we then find the following maps of

fields. First of all, the background charge of the field φ is shifted from Qφ = b to Qφ =

b+1/b. After the twist, the field φ corresponds to the Liouville field. Recall that the central

charge is written as c = 1+3Q2 in terms of background charge Q. Next, the field X would

have background charge QX = i(1/b−b) after the twist, and this field becomes the bosonic

part of the ĉ ≤ 1 matter. The conformal weights of fermions (θ, p) are shifted from (0, 1)

to (1/2, 1/2) and they become superpartners of the above bosonic fields. The other fields

ψ± and ϕ± are mapped to the superghosts (b, c) and (β′, γ′) of type 0 superstring theory.6

In table 1 the changes of conformal weights are summarized. In the end we expect that

(β, γ) would be canceled out with (B,C) as in the bosonic string case [14]. In this way we

obtain the same field contents as the world-sheet theory of the type 0 ĉ ≤ 1 string including

ghosts. More detailed explanation of the type 0 string will be given in subsection 4.1.

2.4 Chiral primaries

In the previous subsection we have shown that free fields in the N = 2 coset are mapped

to the matter contents of the ĉ ≤ 1 superstring theory after the topological twist. In

fact we can identify physical operators of the topological model with those of the ĉ ≤ 1

superstring, which is the subject of this subsection. In order to define the coset model

5This choice means that we gauge the vector U(1) current instead of the axial U(1) current. The former

may produce a trumpet like geometry and the latter a black hole like geometry [32]. We choose the vector

gauge just for the simplicity of expression.
6Here we use the notation (β′, γ′) to represent superghosts of superstring in order to distinguish them

from the ones in (2.3).

– 6 –
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we have introduced two spin 1/2 fermions ψ± and two spin 1/2 bosons ϕ±. With the

bosonization formula, they can be written as

ψ+ = eiH , ψ− = e−iH , ϕ+ = e−χ∂ξ, ϕ− = eχη, (2.21)

where H,χ are free bosons without background charges and free fermions ξ, η are with

∆ξ = 0,∆η = 1. The non-trivial OPEs are given as

H(z)H(0) ∼ − ln z, χ(z)χ(0) ∼ − ln z, η(z)ξ(0) ∼ 1

z
. (2.22)

These bosonized expressions of fermions are useful to define vertex operators. Since the

operators of the coset model must be invariant under the BRST charge (2.18), they should

take the form

eirH+uχΦs
j,me

2ib(m+r−u
2 )X , (2.23)

whose conformal weight is

∆ = −2b2j

(
j +

1

2

)
+
s(s− 1)

2
+
r2

2
− u2

2
+ 2b2

(
m+ r − u

2

)2
. (2.24)

Here we have used Φs
j,m as the vertex operator of OSP(1|2) WZNW model as defined

in (2.8).

Physical operators of the topological model can be constructed from chiral primaries

of the N = 2 coset model. Here we review how to perform the topological twist to the

chiral primaries by following [7, 14]. First we find chiral primary states of the coset in

NS-sector,7 which satisfy

G+
r−1/2|NS〉 = G−

r+1/2|NS〉 = 0 (2.25)

for r = 0, 1, · · · . Among the vertex operators of the form (2.23), there are chiral primary

operators ONS,s
j corresponding to the above chiral primary states. These chiral primaries

can be mapped to R-ground states by spectral flow operation. Redefining the U(1)R
current (2.16) as

JR = −2b2Ĵ3 − ψ+ψ− − ϕ+ϕ− = −ib∂XR, (2.26)

with XR(z)XR(0) ∼ ln z, the R-ground states are obtained by OR,s
j = e

i
2
bXRONS,s

j . Finally,

the elements of cohomology for the topological theory are obtained by the topological twist

as Os=1
j = e−

i
2

√
kbX′

ROR,s
j . Here we define X ′

R as

J ′
R = −2J3 − 3ψ+ψ− − 2ϕ+ϕ− + 2ib(k − 2)∂X =: −i

√
kb∂X ′

R (2.27)

from the expression of R-current (2.20).

7Notice that there are three different spin structures that appear in this paper. One is for the OSP(1|2)

current algebra, which is defined such that an an integer s in (2.8) means the NS-sector, while a half integer

s implies R-sector. The second spin structure is the ordinary one for the N = 2 superconformal field theory.

The third one is for the ĉ ≤ 1 superstring. In this section the notion of NS,R is with respect to the second

spin structure.

– 7 –
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Among the chiral primaries of the N = 2 coset model, we focus on the following two

types of operators in NS-sector;

ONS, 1
2

j = e−
1
2
χΦ

1
2

j,j− 1
4

e2ibjX , ONS,1
j = Φ1

j,je
2ibjX , (2.28)

which satisfy ∆ = qR/2 = −jb2 − 1/4 and ∆ = qR/2 = −jb2, respectively. The R-sector

ground states are constructed as

OR, 1
2

j = e
i
2
HΦ

1
2

j,j− 1
4

e2ib(j+ 1
4)X , OR,1

j = e
i
2
H+ 1

2
χΦ1

j,je
2ib(j+ 1

4)X . (2.29)

After the topological twist we finally obtain

O
1
2
j = e−iH−χΦ

1
2
,w=1

j,j− 1
4

e
2ib

“

j+ 1
4b2

”

X
, O1

j = e−iH− 1
2
χΦ1,w=1

j,j e
2ib

“

j+ 1
4b2

”

X
. (2.30)

Notice that vertex operators are spectrally flowed in the sense of OSP(1|2) WZNW model

as in (2.12) during the procedure of topological twist. Under the spectral flow action we

may identify Φs,w=1

j,j+ s−1
2

= Φ
s− 1

2

−j− k
2
+ 1

4
,j+ s−1

2
+ k

2

. Combining with the free field representation

of vertex operators (2.8), we find

O
1
2
j ∼ ce−χe

2ib
“

j+ 1
4b2

”

X+2b(j+ k
2
− 1

4)φ
, O1

j = ce−
1
2
χe

i
2
Y +2ib

“

j+ 1
4b2

”

X+2b(j+ k
2
− 1

4)φ
. (2.31)

In the above, we renamed c = exp(−iH) as suggested by the previous discussion. Moreover

the β-ghost in the superstring should be written as β′ = ∂ξ exp(−χ). Therefore, we can

say that these operators have one c-ghost and picture −1.8

Notice that the above two operators (2.31) indeed coincide with the tachyon and RR

field vertex operators in the two dimensional type 0 superstring, respectively (see subsec-

tion 4.1). Actually they complete the list of physical operators since there are no massive

stringy modes in two dimensional superstring. This fact may be seen by taking the light-

cone gauge. In this way, we have learned that the physical states (chiral primary states)

in the topological string on OSP(1|2)/U(1) are mapped into the physical states in the two

dimensional type 0 string. We will study the relation between these two theories in more

detail below.

3 OSP(1|2)/U(1) coset from N = 1 super Liouville

In references [22, 23] it was shown that arbitrary correlation functions of primary fields

in SL(2) WZNW model can be written in terms of correlation functions of Liouville field

theory. This property may be useful to show the equivalence between the scattering ampli-

tudes in c ≤ 1 bosonic string and the topological string on SL(2)/U(1). The agreement for

three-point functions between them has been shown in [7], and this is generalized by [36] to

arbitrary tree level amplitudes by utilizing the generalized relation of [37]. Recently it was

8The operators corresponding to those in the other picture may be obtained by the action of operator

similar to the picture changing operator.
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shown in [21] that correlation functions of OSP(1|2) WZNW model can be written in terms

of those of N = 1 super Liouville field theory. Later we would like to show the equivalence

between N = 2 coset model of OSP(1|2)/U(1) and the ĉ ≤ 1 superstring in the level of

amplitudes. For the purpose we generalize the relation such as to include RR-sectors of

fermions and spectrally flowed sectors of OSP(1|2) model. In this section we derive the

generalized relation in the path integral formulation following [21, 23].

3.1 OSP(1|2) WZNW model

Let us start from the action of OSP(1|2) WZNW model. In terms of free fields the action

may be written as9

SWZNW(g) =
1

2π

∫
d2z

[
1

2
∂φ∂̄φ+

b

8

√
gRφ+ β∂̄γ + β̄∂γ̄ + p∂̄θ + p̄∂θ̄ (3.1)

−1

k
ββ̄e2bφ − 1

2k
(p+ βθ)(p̄+ β̄θ̄)ebφ

]
,

where φ, γ, γ̄, θ, θ̄ are related to the parameters of elements g ∈ OSP(1|2) and β, β̄, θ, θ̄ are

conjugate variables. The generators of current algebra symmetry are written as in (2.3) in

these variables. Here we use the form of vertex operator as

V s,s̄
j (µ|z) = µj+ 1

2
+ s

2 µ̄j+ 1
2
+ s̄

2 eisY +is̄Ȳ eµγ−µ̄γ̄e2b(j+ 1
2)φ . (3.2)

For the NSNS-sector with s, s̄ = 0, 1 these vertex operators are the same as in [21]. The

conformal weights are given as ∆ = −2b2j(j + 1/2). The vertex operators in the RR-

sector are given by spin fields with s = s̄ = 1/2, and the conformal weights are ∆ =

−2b2j(j + 1/2) + 1/8. The above expression in so-called µ-basis is useful for our purpose,

and it can be mapped to the m-basis expression given in (2.8) by10

Φs,s̄
j,m,m̄ =

∫
d2µ

|µ|2µ
−mµ̄−m̄V s,s̄

j (µ|z). (3.3)

In some sense, the µ-basis expression can be thought of generating function of the m-basis

expression.

Since the operators of topological model in (2.30) are written in terms of OSP(1|2)
vertex operators with spectral flow index w = 1, it is important to understand the symmetry

under the spectral flow. The spectral flow action ρw can be defined as

ρw(J3
n) = J3

n − k

2
wδn,0, ρw(J±

n ) = J±
n±w, ρw(j±r ) = j±r±w

2
, (3.4)

where the mode expansions are JA(z) =
∑

n J
A
n z

−n−1 with A = ±, 3 and j±(z) =∑
r j

±
r z

−r−1. We can easily see that the new currents satisfy the same (anti-)commutation

9 A derivation of this action can be found in [21]. This action hare is a bit different from the one in [21],

but it is easy to see the equivalence between the two expressions.
10In order to compare with the previous notation, we may need to perform a flip j → −j−1/2. Moreover,

it might be natural to multiply the factor Ns.s̄
j,m,m̄ = Γ(−j+1/2−s/2+m)

Γ(j+1/2+s̄/2−m̄)
as, e.g., in [22]; see also [38]. Here we

remove it since it may diverge in our case.
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relations as before, which implies that the spectral flow is the symmetry of the current

algebra OSP(1|2). The vacuum state is defined such as

ρw(JA
n )|w〉 = 0, ρw(j±r )|w〉 = 0 (3.5)

for n, r ≥ 0. In terms of free fields, the vacuum state |w〉 = |w〉(β,γ) ⊗ |w〉φ ⊗ |w〉Y is

characterized as

βn−w|w〉(β,γ) = 0, γn+w|w〉(β,γ) = 0 (3.6)

for n ≥ 0, and moreover

|w〉φ = e
w
2b

φ|0〉φ, |w〉Y = e−
iw
2

Y |0〉Y . (3.7)

In the following we assume w ≥ 0 and denote vw(0) as the operator corresponding to the

state |w〉.
As discussed in [37, 39], generic N -point functions of operators with spectral flow

can be reduced to N -point functions of (3.2) with the inversion of vw(ξ). We choose the

position of insertion vw(ξ) as ξ = 0 since it does not affect the following discussion. In the

path integral formulation they are given as

〈
N∏

ν=1

V sν ,s̄ν

jν
(µν |zν)vw(0)

〉
=

∫

(w)
DφD2βD2γD2θD2pe−SWZNW(g) × (3.8)

×
N∏

ν=1

V sν ,s̄ν (µν |zν)ew(φ(0)/2b−iY (0)/2).

The effects of insertion vw(0) appears in the right hand side in two ways. One is the extra

insertion of vertex operator ew(φ(0)/2b−iY (0)/2), and the other is the restriction to the integra-

tion domain of β, β̄ such that β, β̄ have a zero of order w at ξ = 0. For more detail see [39].

3.2 OSP(1|2) — super Liouville correspondence

Now that we have the OSP(1|2) WZNW model, we can derive the relation between the

correlation functions of OSP(1|2) WZNW model and those of N = 1 super Liouville field

theory by following the analysis of [21]. For this purpose we first integrate β, γ as in [21]. In-

tegrations over γ and γ̄ lead to delta functionals for β and β̄, which replace the fields β, β̄ by

β(x) =

N∑

ν=1

µν

x− zν
= u

xw
∏N−2−w

i=1 (x− yi)∏N
ν=1(x− zν)

=: uB(x). (3.9)

The insertion of vw(0) forces β(x) to have a zero of order w at x = 0 and this requirement

gives constraints
N∑

ν=1

µνz
−n
ν = 0 (3.10)

for n = 0, 1, · · · , w. Since a 1-form with N poles on a sphere has N − 2 zero’s, β can be

represented as in the right hand side by the positions of N − 2−w more zero’s yi. In other
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words, the parameters yi are defined by the equation (3.9), and the new parameters are

essential to relate the model to super Liouville theory as seen below. Moreover, we can see

that the number of spectral flow w is restricted as w ≤ N − 2.

After the integration over β, γ, the action becomes something similar to super Liouville

theory, but the coefficients include functions B(z), B̄(z̄). Following [21, 39] these can be

removed by the redefinition of fields as

φ′ := φ+
1

2b
ln |uB|2, Y ′ := Y − i

2
ln |uB|2. (3.11)

Moreover, after some manipulations we find the relation

〈
N∏

ν=1

V sν ,s̄ν

jν
(µν |zν)vw(0)

〉

=

w∏

n=0

δ2

(
∑

ν

µνz
−n

)

|u|2−
w

2b2
+ w

2 |Θw
N |2

〈
N∏

ν=1

V
sν− 1

2
,s̄ν− 1

2
αν (zν)

N−2−w∏

j=1

V
1
2
, 1
2

− 1
2b

(yj)

〉

(3.12)

with αν = 2b(jν + 1/2) + 1/2b. The right hand side is computed by the sum of N = 1

super Liouville theory (φ′, ψ, ψ̄) and massless fermions (ψX , ψ̄X)

S[φ′, ψ, ψX ] =
1

4π

∫
d2z

[
∂φ′∂̄φ′ +

Qφ′

4

√
gRφ′ +

2

k
e2bφ′

+

+ψ∂̄ψ + ψ̄∂ψ̄ + ψX ∂̄ψX + ψ̄X∂ψ̄X − 2

k
ψψ̄ebφ

′

]
(3.13)

with Qφ′ = b+ 1/b. The fermions are defined by

ψ ± iψX =
√

2e±iY ′

, ψ̄ ± iψ̄X =
√

2e±iȲ ′

, (3.14)

and the vertex operators are

V s,s̄
α (z) = eisY +isȲ eαφ′

(3.15)

with conformal weights ∆ = α(Qφ′ − α)/2 + s2/2. The twist factor is

Θw
N =

N∏

µ<ν

(zµ − zν)
1

4b2
− 1

4

N−2−w∏

i<j

(yi − yj)
1

4b2
− 1

4

N∏

ν=1

N−2−w∏

i=1

(zν − yj)
− 1

4b2
+ 1

4 . (3.16)

Here we should notice that the operators in the NSNS(RR)-sector are mapped to those in

the RR(NSNS)-sector. Moreover, if the winding number is violated maximally as w = N−2,

then there is no extra insertion of operator at z = yi.

3.3 Amplitudes of OSP(1|2)/U(1) coset model

Utilizing the fundamental relation (3.12), we can rewrite correlation functions of

OSP(1|2)/U(1) coset in terms of N − 1 super Liouville theory with a supersymmetric
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pair of free boson and fermion in a manner similar to the bosonic case [39]. Here the vertex

operators of coset model are defined as in (2.11),11

Ψs,s̄
j,m,m̄(z, z̄) = V X3

m,m̄(z, z̄)Φs,s̄
j,m,m̄(z, z̄) (3.17)

with

V X3

m,m̄(z, z̄) = e
i
q

2
k (−mX3+m̄X̄3). (3.18)

Moreover, the vertex operators of OSP(1|2) model with spectral flow index w are related

to vertex operators of OSP(1|2)/U(1) model as (see (2.12))

Ψs,s̄
j,m,m̄(z, z̄) = V X3

m+ kw
2

,m̄+ kw
2

(z, z̄)Φs,s̄,w
j,m,m̄(z, z̄). (3.19)

Therefore we can also obtain a formula for correlation functions of OSP(1|2) model with

non-trivial spectral flow actions. In particular, we will be interested in a specific N -point

function in OSP(1|2) WZNW model as

M =

〈
Φs1,s̄1

j1,m1,m̄1
(z1)Φ

s2,s̄2
j2,m2,m̄2

(z2)
N∏

ν=3

Φsν ,s̄ν ,wν=1
jν ,mν ,m̄ν

(zν)

〉
. (3.20)

Since the amplitude has N − 2 number of winding violation, it should be written in terms

of N -point function of N = 1 super Liouville theory.

Let us first study N -point function of OSP(1|2)/U(1) coset model. As before we

introduce a new field X̂3 by

X̂3
L := X3

L − i

√
k

2
ln(uB), (3.21)

and the right mover defined by its complex conjugate. By closely following [23] and utilizing

the formula (3.12), we finally obtain

〈
N∏

ν=1

Ψsν ,s̄ν

jν ,mν ,m̄ν

〉

=

∫ ∏N−2−w
i=1 d2yi

(N − 2 − w)!
× (3.22)

×
〈

N∏

ν=1

V X̂3

mν+ k
2
,m̄ν+ k

2

(zν)V
sν− 1

2
,s̄ν− 1

2
αν (zν)

N−2−w∏

i=1

V X̂3

− k
2
,− k

2

(yi)V
1
2
, 1
2

− 1
2b

(yi)

〉

.

The label w is related to the winding number violation as
∑

ν mν =
∑

ν m̄ν = −kw
2 . The

right hand side should be computed by the theory with the action S[φ′, ψ, ψX ] for N = 1

super Liouville theory and a free fermion (ψX , ψ̄X) and a free boson X̂3 with background

charge Q = −i
√
k for its dual field.

With the formula (3.22) and (3.19) we can write down generic correlation functions in

the OSP(1|2) model with spectral flow action considered in terms of super Liouville theory.

Here we only compute the amplitude (3.20) since it is the case used in the later analysis.

11Only in this subsection we construct the coset model by gauging the axial U(1) symmetry in order to

use the trick of [39].
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With the formula (3.19) we can relate the amplitude (3.20) to a N -point function of the

coset as
〈

N∏

ν=1

Ψsν ,s̄ν

jν ,mν ,m̄ν

〉
= M×

〈
V X3

m1,m̄1
(z1)V

X3

m2,m̄2
(z2)

N∏

ν=3

V X3

mν+ k
2
,m̄ν+ k

2

(zν)

〉
. (3.23)

Then, by combining with the formula (3.22), we find

M = |Θs(zν)|2
〈

N∏

ν=1

V
sν− 1

2
,s̄ν− 1

2
αν (zν)

〉

, (3.24)

where the right hand side is computed by the N = 1 super Liouville theory and a free

fermion with the action (3.13). The coefficient is given by

Θs(zν) = (z1 − z2)
k
2
+m1+m2

N∏

ν=3

[(z1 − zν)(z2 − zν)]
k
2
+mν , (3.25)

and bared expression for Θ̄s(z̄ν). This formula will be important to relate amplitudes of

the topological model and the ĉ ≤ 1 superstring theory.

4 Correspondence to ĉ ≤ 1 superstring theory

In section 2, we have studied the topological model based on the N = 2 supersymmetric

coset OSP(1|2)/U(1). In particular, we have observed that free fields and chiral primaries

of the coset model are mapped to matter contents and physical operators in the ĉ ≤
1 superstring theory. In this section, we establish the relation in more detail. After

briefly reviewing the ĉ ≤ 1 superstring theory and the method to compute amplitudes

in topological models, we compare the amplitudes of both theories.

4.1 ĉ ≤ 1 superstring theory

In section 2 we have already encountered the ĉ ≤ 1 superstring theory during constructing

the topological model of the coset OSP(1|2)/U(1). In this subsection we define the ĉ ≤ 1

superstring theory in a more precise way.12 The matter part consists of a linear dilaton X

with background charge QX = i(1/b− b) and a free fermion ψX . The action of these fields

is given by

SX =
1

4π

∫
d2z

[
∂X∂̄X +

QX

4

√
gRX + ψX ∂̄ψX + ψ̄X∂ψ̄X

]
. (4.1)

The theory also includes the N = 1 super Liouville theory, whose action is

S =
1

4π

∫
d2z

[
∂φ∂̄φ+

Qφ

4

√
gRφ+ ψ∂̄ψ + ψ̄∂ψ̄ + µLψψ̄e

bφ

]
(4.2)

with Qφ = b+ 1/b. The total central charge is now c = 3/2 + 3Q2
X + 3/2 + 3Q2

φ = 15, and

hence we can construct a critical superstring theory by coupling the world-sheet superghosts

(b, c) and (β′, γ′).

12Notice that we are setting α′ = 2 in this paper.
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Primary operators of this theory may take the form exp(αX + βφ), which has the

conformal weight ∆ = α(QX − α)/2 + β(Qφ − β)/2. Following the standard method

to construct BRST invariant operators, we can find out physical operators in the ĉ ≤ 1

superstring theory. The tachyon vertex operator is given as

cc̄T (−1)
p = cc̄e−(χ+χ̄)eikX(X+X̄)+k±

φ φ, (4.3)

where the momenta run over ikX = QX/2+ip and k±φ = Qφ/2±p with p ∈ R. We bosonize

the superghost β′, γ′ like in (2.21), which yields the new fields χ. In other words, the above

expression is in (−1,−1) picture; and in (0, 0) picture it is written as

cc̄T (0)
p = cc̄

(
ikXψX + k±φ ψ

)(
ikX ψ̄X + k±φ ψ̄

)
eikX(X+X̄)+k±

φ φ. (4.4)

There are other physical operators in the RR-sector. The Ramond vertex operator in

(−1/2,−1/2) picture is written as

cc̄R(−1/2)
p = cc̄e−

1
2
(χ+χ̄)e±

i
2
(Y +Ȳ )+ikX(XL+XR)+k±

φ φ. (4.5)

Indeed, these vertex operators (4.3) and (4.5) are the same as those obtained from the

topological string on OSP(1|2)/U(1) as observed in (2.31).

If X direction is compactified with radius R, then the momentum takes discrete values

p = n/R with n ∈ Z. For winding modes we should replace XR → −XR, H̄ → −H̄ and

p = wR/2 with w ∈ Z. After the proper GSO projection, type 0B theory has the tachyon

modes and the momentum modes in the RR-sector, On the other hand, type 0A theory has

the tachyon modes and the winding modes in the RR-sector. See, e.g. [4, 5] for more detail.

4.2 Amplitudes of topological model

Before dealing with the specific case of OSP(1|2)/U(1), we give generic arguments on

amplitudes in topological models. Let us consider a topological field theory obtained by the

topological twist T top(z) = T (z) + 1/2∂JR(z) of a N = 2 super conformal field theory [34,

35]. We consider the B model, namely twist the same way for the anti-holomorphic part

as T̄ top(z̄) = T̄ (z̄) + 1/2∂̄J̄R(z̄). Then the physical spectrum can be computed from the

cohomology of BRST operator Q =
∮
G+(z)dz. Let us write a basis of physical operators

(in NS sector) as φi, then we can obtain other types of physical operators as

∮
dzG−

− 1
2

· φi,

∮
dz̄Ḡ−

− 1
2

· φi,

∫
d2zG−

− 1
2

Ḡ−
− 1

2

· φi. (4.6)

Following the arguments on [35, 40, 41], we compute amplitudes of the form

F =

〈
φi1(z1)φi2(z2)φi3(z3)

N∏

ν=4

[∫
d2zν φ̃iν (zν)

]〉
, (4.7)

which would give us non-trivial information of the topological model. Here we have defined

φ̃i = G−
− 1

2

Ḡ−
− 1

2

φi.

– 14 –



J
H
E
P
0
9
(
2
0
0
9
)
0
0
1

An important fact is that the above amplitudes of topological model can be com-

puted in the original untwisted model [35]. After the topological twist the U(1)R cur-

rent becomes anomalous, and hence we should insert U(1)R fields into correlators of

original model to reproduce the topological amplitudes. Here we insert the operator

µ(z, z̄) = e
i
2

√
c
3
(XR(z))+X̄R(z̄)) at two points z = z1, z2, where the free boson XR is related

to the R-current as JR(z) = −i
√

c
3∂XR(z). This operator maps the physical operators φi

of the topological model to operators φR
i in the R-ground states of the original model. In

this way, we can write the topological amplitude (4.7) as

F = |z1 − z2|q1+q2(|z1 − z3||z2 − z3|)q3 × (4.8)

×
〈

φR
i1(z1)φ

R
i2(z2)φi3(z3)

N∏

ν=4

[∫
d2zν(|z1 − zν ||z2 − zν |)qν−1φ̃iν (zν)

]〉

,

where the right hand side is computed in the original model before the topological twisting.

Here we have denoted qν as the U(1)R charge of φiν .

4.3 Comparison of correlation functions

After the preparation we can now compare correlation functions of topological model on

OSP(1|2)/U(1) and of the ĉ ≤ 1 superstring. We start from the amplitude of the topological

model, and then show the equivalence by using the formula (3.24) obtained above. Here

we only consider the amplitudes of operator of the first type in (2.30), which corresponds

to the tachyon operator in the ĉ ≤ 1 superstring. The case with the second type in (2.30)

can be analyzed in a similar way.

Since the conservation of U(1) current J = ∂χ is violated by the amount of −2, non

vanishing amplitudes may be given as

F =

〈
O

1
2
j1

(z1)O
1
2
j2

(z2)O
− 1

2
j3

(z3)
N∏

ν=4

[∫
d2zνÕ

− 1
2

jν
(zν)

]〉
. (4.9)

This violation corresponds to the fact that the sum of picture must be −2 in superstring

theory. The operator O
1
2
j is defined in (2.30) as

O
1
2
j = e−i(H+H̄)−(χ+χ̄)Φ

1
2
, 1
2
,w=1

j,j− 1
4
,j− 1

4

e
2ib

“

j+ 1
4b2

”

(X+X̄)
. (4.10)

Following the argument in the previous subsection, this operator would be mapped to the

R-ground state operator of the original model

OR, 1
2

j = e
i
2
(H+H̄)Φ

1
2
, 1
2

j,j− 1
4
,j− 1

4

e2ib(j+ 1
4)(X+X̄). (4.11)

Another operator O− 1
2

j is given by a linear combination of

e−i(H+H̄)Φs,s̄,w=1

j,j+ 1
4
,j+ 1

4

e
2ib

“

j+ 1
4b2

”

(X+X̄)
(4.12)
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with s, s̄ = −1/2, 3/2. This operator should correspond to picture (0, 0) tachyon, and

can be constructed by following the analysis in section 2. The other operator Õ− 1
2

j is

then generated by the action of G−
−1/2Ḡ

−
−1/2 as mentioned before and written as a linear

combination of

Φs,s̄,w=1

j,j− 3
4
,j− 3

4

e
2ib

“

j+ 1
4b2

”

(X+X̄)
(4.13)

with s, s̄ = −1/2, 3/2.

As argued in the previous subsection, we first map the amplitude of topological

model (4.9) to that of original model before twisting as in (4.8). Then we can use the

formula (3.24) to relate it to the amplitude of N = 1 super Liouville theory. Following the

analysis of [7, 36] we can then show that

F =

〈

cc̄T (−1)
j1

(z1)cc̄T (−1)
j2

(z2)cc̄T (0)
j3

(z3)

N∏

ν=4

[∫
d2zνT (0)

jν
(zν)

]〉

(4.14)

up to some coefficients. Here, the operators T (p) are tachyon operators in the p-th picture

and they are given by

T (−1)
p = e−(χ+χ̄)eikX(X+X̄)+k+

φ φ , (4.15)

T (0)
p = (ikXψX + k+

φ ψ)(ikX ψ̄X + k+
φ ψ̄)eikX(X+X̄)+k+

φ φ (4.16)

with kX = (1/b − b)/2 + 2b(j + 1/4) and k+
φ = (1/b + b)/2 + 2b(j + 1/4). In this way we

have shown that the amplitude of topological string on OSP(1|2)/U(1) can be identified

with that of the ĉ ≤ 1 superstring.

5 Conclusion and discussions

In this paper we have proposed an equivalence between the topological string theory based

on the coset OSP(1|2)/U(1) and the ĉ ≤ 1 superstring theory. The latter is constructed

by coupling a ĉ ≤ 1 matter to the N = 1 super Liouville theory. This can be regarded as

a supersymmetric version of the equivalence between the topological string on SL(2)/U(1)

and the c ≤ 1 bosonic string, which was originally discovered by Mukhi and Vafa [14] for

the case c = 1 and was later generalized to the c < 1 case in [7]. First we showed in the

free field description that the field contents and the physical operators of the world-sheet

theories of both string theories match. Moreover, we investigated the proposed equivalence

at the level of scattering amplitudes by applying the map [21] between correlation functions

in the OSP(1|2) WZNW model and in super Liouville field theory.

This map is a supersymmetric version of the one found by Ribault and Teschner to re-

late correlation functions in the SL(2) WZNW model and those in Liouville theory [22, 23].

In the last years, the result has been used with great success to investigate different du-

alities between non-rational conformal field theories. In particular, it has led to the proof

of Fateev-Zamolodchikov-Zamolodchikov conjecture in [39]. The duality between different

non-rational two-dimensional conformal field theories has a long story, and now a con-

siderable list of examples is available: quantum Hamiltonian reduction [16], Mukhi-Vafa
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duality [7, 14], and Fateev-Zamolodchikov-Zamolodchikov duality [42] (and its supersym-

metric version [43]) are probably the most renowned examples. These examples were, in

fact, very useful to study string theory. For instance, it was the Fateev-Zamolodchikov-

Zamolodchikov duality what really permitted to construct a dual matrix model for strings

in the the 2D black hole background [44]. It is our hope that the new equivalence between

conformal theories we studied in this paper will be relevant to understand new aspects of

superstring dualities as well.

There are a number of issues which should be understood in the future. First we

would like to understand better the spin structure and the picture changing operation of

the topological string theory on the supercoset. It is also important to prove the complete

equivalence of physical states between these two theories. An exhaustive analysis of the

cohomology of the theory is needed to this end. Finally, it would be nice if we could under-

stand a geometrical interpretation of the supercoset OSP(1|2)/U(1) in terms of a certain

(maybe super) Calabi-Yau manifold, as SL(2)/U(1) coset model is related to the conifold.
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A Free field correlation functions

Although the computation of N -point functions in the OSP(1|2) WZNW model also in-

volves fermion contributions and the insertion of picture changing operators, the building

blocks to construct such observables are the correlation functions of vertices (2.8). Let us

discuss these correlation functions in the free field representation proposed here. Consider

the vertex operators

Φs
j,m(z) = N s

j,m γ
−j−1/2+m−s/2
(z) e2(j+1/2)bφ(z)eisY (z) × h.c. (A.1)

where h.c. stands for the anti-holomorphic portion of the operator,13 and N s
j,m refers

to the normalization.

Correlation functions are defined as follows;
〈∏N

ν=1
Φsν

jn,mν
(zν)

〉
=

∫
DφD2βD2γD2θD2p e−SWZNW(g)

∏N

ν=1
Φsν

jn,mν
(zν)

13More precisely, the h.c. refers to the ”bared contribution”, and not necessarily to the anti-holomorphic

part. Actually, labels s, m and s̄, m̄ are not necessarily related by complex conjugation.
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where SWZNW(g) refers to the action of the WZNW model (3.1). It is convenient to

consider again the bosonization (2.5); that is, defining θ = eiY , p = e−iY . The existence of

non-trivial background charges associated to the fields φ and Y requires special treatment

of correlators. As usual in the Coulomb gas representation, this charge compensation is

achieved by inserting additional operators that contribute to screen the charges at infinity.

Screening operators are exact marginal deformations of the affine theory. In this theory

four operators of this kind are available; namely

S++(z, z̄) =
λ

2k
S+(z)S̄+(z̄), S+−(z, z̄) =

λ

2k
S+(z)S̄−(z̄), (A.2)

S−+(z, z̄) =
λ

2k
S−(z)S̄+(z̄), S−−(z, z̄) =

λ

2k
S−(z)S̄−(z̄), (A.3)

with

S+(z) = e−iY (z)ebφ(z), S−(z) = β(z)e
+iY (z)ebφ(z), (A.4)

and where λ is a constant (see below).

The N -point correlation functions are thus defined by inserting different amount of

screening operators (A.2)–(A.3) in the correlators, in addition to the N vertex operators.

Non-vanishing correlation functions are given by

n+ − n− =
∑N

ν=1
sν − 1, n̄+ − n̄− =

∑N

ν=1
s̄ν − 1 (A.5)

n+ + n− = n̄+ + n̄− = −2
∑N

ν=1
jν + 1 −N (A.6)

together with
∑N

ν=1
mν =

∑N

ν=1
m̄ν = 0, (A.7)

where n± (and n̄±) are the amount of operators of the type S±(z) (resp. S̄±(z̄)) in the

correlators. Equations (A.5)–(A.7) determine the amount of screening operators in terms

of the quantum number of the vertices involved in the correlators.

To illustrate the Coulomb gas prescription, let us consider the sector sν = s̄ν , which

yields n± = n̄±. In this case, correlation functions are given by contributions of the form

(λ/2k)n++n−

n+!n−!

∫ ∏n+

r=1
d2wr

∏n−

l=1
d2yl

〈∏N

ν=1
Φsν

jn,mν
(zν)

∏n+

r=1
S++(wr)

∏n−

l=1
S−−(yl)

〉

free
(A.8)

where the subscript “free” refers to the fact that this correlator is defined in the

free field theory. The amount of screening insertions n± in (A.8) is given by (A.5)

and (A.6). Correlators similar to (A.8) but with a different amount of screening inser-

tions
∏n+−n

r=1 S++(wr)
∏n−−n

l=1 S−−(yl)
∏n

t=1 S−+(ŵt)
∏n

s=1 S+−(ŷs) also contribute. All

the contributions are gathered with an appropriate prescription to integrate the screening

operators in the world-sheet.

The inclusion of screening operators (A.2)–(A.3) in (A.8) can be also thought of as com-

ing from the interaction terms in the action SWZNW(g). In this picture, conditions (A.5)–

(A.7) emerge from the integration over the zero-modes of the fields. The scale λ is easily
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introduced by shifting the zero mode of φ as φ(z) → φ(z) + b−1 log(λ). The parameter λ

allows to keep track of the KPZ scaling of correlation functions [45].

Correlation functions (A.8) can be computed by using free field propagators (2.4),
〈∏N

ν=1
Φsν

jn,mν
(zν)

〉
=
∏N

ν=1
N sν

jν ,mν

(λ/2k)n++n−

n+!n−!

∫ ∏n+

r=1
d2wr

∏n−

l=1
d2yl

×
〈∏N

ν=1
eisνY (zν)

∏n+

r=1
e−iY (wr)

∏n−

l=1
eiY (yl)

〉

free

×

×
〈∏N

ν=1
eb(2jν+1)φ(zν )

∏n+

r=1
ebφ(wr)

∏n−

l=1
ebφ(yl)

〉

free

×

×
〈∏N

ν=1
γ

mν−jν−(sν+1)/2
(zν)

∏n−

l=1
β(yl)

〉

free

× h.c. (A.9)

where, again, N s
j,m is the normalization of the vertex. The standard normalization N s

j,m =
Γ(−j+1/2−s/2+m)
Γ(j+1/2+s̄/2+m̄) yields

〈
Φs

j,m(z1)Φ
1−s
−j−1/2,−m(z2)

〉
= |z1 − z2|−4∆.

By expanding this expression, after Wick contracting all the contributions, it takes the form

〈∏N

ν=1
Φsν

jn,mν
(zν)

〉
=

1

n+!n−!

(
λ

2k

)−2(j1+...jN )+1−N)∏N

ν=1
N sν

jν ,mν
×

×
∏N

µ<ν
(zµ − zν)sµsν−b2(2jµ+1)(2jν+1)

∫ ∏n+

r=1
d2wr

∏n−

l=1
d2yl ×

×
∏n−

l=1

∏n+

r=1
(wr − yl)

−1−b2
∏n−

l<l′
(yl − yl′)

1−b2
∏n+

r<r′
(wr − wr′)

1−b2 ×

×
∏N

ν=1

∏n+

r=1
(zν − wr)

−sν−b2(2jν+1)
∏N

ν=1

∏n−

l=1
(zν − yl)

sν−b2(2jν+1) ×

×
〈∏N

ν=1
γ

mν−jν−(sν+1)/2
(zν)

∏n−

l=1
β(yl)

〉

free

× h.c. (A.10)

In addition, we may resort to projective invariance to fix three points at z1 = 0, z2 = 1,

and zN = ∞.

The correlator of the (β,γ) ghost fields in (A.10) yields a rather complicated expression

in general. Nevertheless, it simplifies substantially in some particular cases. For instance,

in the case of two insertions it reads [46, 47]
〈
γ

m1−j1−(s1+1)/2
(z1=0) γ

m2−j2−(s2+1)/2
(z2=1)

∏n−

l=1
β(yl)

〉

free
× h.c. =

∏n−

l=1
|yl|−2|1 − yl|−2 ×

×(−1)n−
Γ(1/2−j1−s1/2+m1)

Γ(1/2+j1+s1/2−m1)

Γ(1/2−j2−s2/2+m2)

Γ(1/2+j2+s2/2−m2)
. (A.11)

World-sheet integral (A.10) can in principle be computed by using generalized Selberg

integral formulas of the type worked out in [48–50]. To do this one has to give a precise

prescription for contour integration. We will not address the details of such prescription

in this appendix.

Integral representation (A.8) gathers the residues associated to theN -point correlation

functions of the OSP(1|2) WZNW model, and after analytic continuation in n± and ji the
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exact form of the correlation functions are obtained. The exact expressions for two- and

three-point correlation functions in the OSP(1|2) WZNW model were found in [21].

Representation (A.8) gives important information about the correlators. For instance,

the KPZ scaling properties can be read from this expression. Correlators (A.10) scale as ∼
(λ/2k)n++n− , where, according to (A.6), n++n− = 1−2(j1+j2+. . . jN )−N . In particular,

for the two-point function, where N = 2 and j1 = j2 = j, we obtain ∼ (λ/2k)−4j−1. So,

let us compare this with the scaling properties of the exact exact solution of the OPS(1|2)
WZNW model found in [21]. First, let us notice that in comparing the conventions of [21]

with ours here we have to redefine j as follows j → j + 1/2. Thus, the KPZ scaling is

∼ (λ/2k)−4j−3 which precisely agrees with the result in [21]. Actually, it is not hard to see

that if one introduces the scale λ in the formulas of [21] then eq. (4.7) therein scales like

∼
(

2kb2

iλγ( b2+1
2 )

)4j+3

. (A.12)

Analogously, for the three-point functions one finds ∼ (λ/2k)−2(j1+j2+j3)−5 which also

coincides with the scaling of eq. (4.21) of [21].

One can also see that in the coincidence limit limz1→z2 Φs1
j1m 1

(z1)Φ
s2
j2m 2

(z2), where

two of the vertices hit each other, the pole condition that appears at z1 = z2 can be

interpreted as a mass-shell condition L0 − 1 = −2b2j(j + 1/2) + s(s − 1)/2 + l = 0 of a

level-l excited intermediate state carrying momenta j = j1 + j2 − 1+ (N +n′+ +n′−)/2 and

s = s1+s2+n′+−n′−, where n′± ≤ n± are the amount of screening operators of the type S±
whose inserting points also tend to z2 together with z1. In this limit, the N -point function

factorizes in the product of one three-point function times one N − 2-point function.
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